Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Biosensors (Basel) ; 13(2)2023 Feb 13.
Article in English | MEDLINE | ID: covidwho-2240070

ABSTRACT

Since the emergence of the COVID-19 pandemic in December 2019, the SARS-CoV-2 virus continues to evolve into many variants emerging around the world. To enable regular surveillance and timely adjustments in public health interventions, it is of the utmost importance to accurately monitor and track the distribution of variants as rapidly as possible. Genome sequencing is the gold standard for monitoring the evolution of the virus, but it is not cost-effective, rapid and easily accessible. We have developed a microarray-based assay that can distinguish known viral variants present in clinical samples by simultaneously detecting mutations in the Spike protein gene. In this method, the viral nucleic acid, extracted from nasopharyngeal swabs, after RT-PCR, hybridizes in solution with specific dual-domain oligonucleotide reporters. The domains complementary to the Spike protein gene sequence encompassing the mutation form hybrids in solution that are directed by the second domain ("barcode" domain) at specific locations on coated silicon chips. The method utilizes characteristic fluorescence signatures to unequivocally differentiate, in a single assay, different known SARS-CoV-2 variants. In the nasopharyngeal swabs of patients, this multiplex system was able to genotype the variants which have caused waves of infections worldwide, reported by the WHO as being of concern (VOCs), namely Alpha, Beta, Gamma, Delta and Omicron variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Spike Glycoprotein, Coronavirus
2.
Microbiol Spectr ; 10(1): e0150421, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1604818

ABSTRACT

In December 2019, a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) started spreading worldwide causing the coronavirus disease 2019 (COVID-19) pandemic. The hyperactivation of the immune system has been proposed to account for disease severity and death in COVID-19 patients. Despite several approaches having been tested, no therapeutic protocol has been approved. Given that Cyclosporine A (CsA) is well-known to exert a strong antiviral activity on several viral strains and an anti-inflammatory role in different organs with relevant benefits in diverse pathological contexts, we tested its effects on SARS-CoV-2 infection of lung cells. We found that treatment with CsA either before or after infection of CaLu3 cells by three SARS-CoV-2 variants: (i) reduces the expression of both viral RNA and proteins in infected cells; (ii) decreases the number of progeny virions released by infected cells; (iii) dampens the virus-triggered synthesis of cytokines (including IL-6, IL-8, IL1α and TNF-α) that are involved in cytokine storm in patients. Altogether, these data provide a rationale for CsA repositioning for the treatment of severe COVID-19 patients. IMPORTANCE SARS-CoV-2 is the most recently identified member of the betacoronavirus genus responsible for the COVID-19 pandemic. Repurposing of available drugs has been a "quick and dirty" approach to try to reduce mortality and severe symptoms in affected patients initially, and can still represent an undeniable and valuable approach to face COVID-19 as the continuous appearance and rapid diffusion of more "aggressive"/transmissible variants, capable of eluding antibody neutralization, challenges the effectiveness of some anti-SARS-CoV-2 vaccines. Here, we tested a known antiviral and anti-inflammatory drug, Cyclosporine A (CsA), and found that it dampens viral infection and cytokine release from lung cells upon exposure to three different SARS-CoV-2 variants. Knock down of the main intracellular target of CsA, Cyclophilin A, does not phenocopy the drug inhibition of viral infection. Altogether, these findings shed new light on the cellular mechanisms of SARS-CoV-2 infection and provide the rationale for CsA repositioning to treat severe COVID-19 patients.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19/virology , Cyclosporine/pharmacology , Cytokines/immunology , Lung/virology , SARS-CoV-2/drug effects , Virus Release/drug effects , COVID-19/genetics , COVID-19/immunology , Cytokine Release Syndrome , Cytokines/genetics , Humans , SARS-CoV-2/genetics , SARS-CoV-2/physiology
3.
Cells ; 10(6)2021 06 08.
Article in English | MEDLINE | ID: covidwho-1264419

ABSTRACT

In late 2019, the betacoronavirus SARS-CoV-2 was identified as the viral agent responsible for the coronavirus disease 2019 (COVID-19) pandemic. Coronaviruses Spike proteins are responsible for their ability to interact with host membrane receptors and different proteins have been identified as SARS-CoV-2 interactors, among which Angiotensin-converting enzyme 2 (ACE2), and Basigin2/EMMPRIN/CD147 (CD147). CD147 plays an important role in human immunodeficiency virus type 1, hepatitis C virus, hepatitis B virus, Kaposi's sarcoma-associated herpesvirus, and severe acute respiratory syndrome coronavirus infections. In particular, SARS-CoV recognizes the CD147 receptor expressed on the surface of host cells by its nucleocapsid protein binding to cyclophilin A (CyPA), a ligand for CD147. However, the involvement of CD147 in SARS-CoV-2 infection is still debated. Interference with both the function (blocking antibody) and the expression (knock down) of CD147 showed that this receptor partakes in SARS-CoV-2 infection and provided additional clues on the underlying mechanism: CD147 binding to CyPA does not play a role; CD147 regulates ACE2 levels and both receptors are affected by virus infection. Altogether, these findings suggest that CD147 is involved in SARS-CoV-2 tropism and represents a possible therapeutic target to challenge COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/physiology , Basigin/physiology , SARS-CoV-2/physiology , Virus Internalization , A549 Cells , Angiotensin-Converting Enzyme 2/metabolism , Animals , Basigin/antagonists & inhibitors , Basigin/genetics , COVID-19/pathology , COVID-19/prevention & control , COVID-19/virology , Caco-2 Cells , Cell Line , Chlorocebus aethiops , Hep G2 Cells , Host-Pathogen Interactions , Humans , Molecular Targeted Therapy , RNA Interference/physiology , RNA, Small Interfering/pharmacology , RNA, Small Interfering/therapeutic use , Receptors, Virus/metabolism , Receptors, Virus/physiology , SARS-CoV-2/metabolism , Vero Cells , Viral Tropism/physiology
4.
Sensors (Basel) ; 21(7)2021 Apr 03.
Article in English | MEDLINE | ID: covidwho-1167703

ABSTRACT

A new coronavirus (SARS-CoV-2) caused the current coronavirus disease (Covid-19) epidemic. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is used as the gold standard for clinical detection of SARS-CoV-2. Under ideal conditions, RT-qPCR Covid-19 assays have analytical sensitivity and specificity greater than 95%. However, when the sample panel is enlarged including asymptomatic individuals, the sensitivity decreases and false negatives are reported. Moreover, RT-qPCR requires up to 3-6 h with most of the time involved in RNA extraction from swab samples. We introduce CovidArray, a microarray-based assay, to detect SARS-CoV-2 markers N1 and N2 in the nasopharyngeal swabs. The method is based on solid-phase hybridization of fluorescently-labeled amplicons upon RNA extraction and reverse transcription. This approach combines the physical-optical properties of the silicon substrate with the surface chemistry used to coat the substrate to obtain a diagnostic tool of great sensitivity. Furthermore, we used an innovative approach, RNAGEM, to extract and purify viral RNA in less than 15 min. We correctly assigned 12 nasopharyngeal swabs, previously analyzed by RT-qPCR. Thanks to the CovidArray sensitivity we were able to identify a false-negative sample. CovidArray is the first DNA microarray-based assay to detect viral genes in the swabs. Its high sensitivity and the innovative viral RNA extraction by RNAGEM allows the reduction of both the amount of false-negative results and the total analysis time to about 2 h.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity
5.
Cells ; 10(3)2021 03 04.
Article in English | MEDLINE | ID: covidwho-1125522

ABSTRACT

Since the outbreak of the COVID-19 crisis, the handling of biological samples from confirmed or suspected SARS-CoV-2-positive individuals demanded the use of inactivation protocols to ensure laboratory operators' safety. While not standardized, these practices can be roughly divided into two categories, namely heat inactivation and solvent-detergent treatments. These routine procedures should also apply to samples intended for Extracellular Vesicles (EVs) analysis. Assessing the impact of virus-inactivating pre-treatments is therefore of pivotal importance, given the well-known variability introduced by different pre-analytical steps on downstream EVs isolation and analysis. Arguably, shared guidelines on inactivation protocols tailored to best address EVs-specific requirements will be needed among the analytical community, yet deep investigations in this direction have not yet been reported. We here provide insights into SARS-CoV-2 inactivation practices to be adopted prior to serum EVs analysis by comparing solvent/detergent treatment vs. heat inactivation. Our analysis entails the evaluation of EVs recovery and purity along with biochemical, biophysical and biomolecular profiling by means of a set of complementary analytical techniques: Nanoparticle Tracking Analysis, Western Blotting, Atomic Force Microscopy, miRNA content (digital droplet PCR) and tetraspanin assessment by microarrays. Our data suggest an increase in ultracentrifugation (UC) recovery following heat treatment; however, it is accompanied by a marked enrichment in EVs-associated contaminants. On the other hand, solvent/detergent treatment is promising for small EVs (<150 nm range), yet a depletion of larger vesicular entities was detected. This work represents a first step towards the identification of optimal serum inactivation protocols targeted to EVs analysis.


Subject(s)
COVID-19/blood , Containment of Biohazards/methods , Extracellular Vesicles/chemistry , Virus Inactivation , COVID-19/virology , Detergents/pharmacology , Extracellular Vesicles/drug effects , Extracellular Vesicles/genetics , Hot Temperature , Humans , MicroRNAs/analysis , Microarray Analysis , Microscopy, Atomic Force , SARS-CoV-2 , Tetraspanins/analysis , Ultracentrifugation
SELECTION OF CITATIONS
SEARCH DETAIL